首页> 外文OA文献 >Asymptotic expansions of the Helmholtz equation solutions using approximations of the Dirichlet to Neumann operator
【2h】

Asymptotic expansions of the Helmholtz equation solutions using approximations of the Dirichlet to Neumann operator

机译:基于maTLaB的Helmholtz方程解的渐近展开式   Dirichlet到Neumann算子的近似

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with the asymptotic expansions of the amplitude ofthe solution of the Helmholtz equation. The original expansions were obtainedusing a pseudo-differential decomposition of the Dirichlet to Neumann operator.This work uses first and second order approximations of this operator to derivenew asymptotic expressions of the normal derivative of the total field. Theresulting expansions can be used to appropriately choose the ansatz in thedesign of high-frequency numerical solvers, such as those based on integralequations, in order to produce more accurate approximation of the solutionsaround the shadow and deep shadow regions than the ones based on the usualansatz.
机译:本文涉及亥姆霍兹方程解的振幅的渐近展开。原始展开式是使用Dirichlet到Neumann算子的伪微分分解获得的。这项工作使用该算子的一阶和二阶逼近来推导总场的正导数的新渐近表达式。结果展开可用于在高频数值求解器(例如基于积分方程的求解器)的设计中适当选择ansatz,以使阴影和深阴影区域周围的解决方案比基于常规泛函的解决方案更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号